
A Users Guide to Spread
Version 0.11

Jonathan R. Stanton
jonathan@cnds.jhu.edu

October 21, 2002

ii

Contents

1 Introduction to Spread 1
1.1 What is Spread?. 1
1.2 Design Issues. 2

1.2.1 Comparison with reliable IP-multicast. 2
1.2.2 Flexibility of services. 3
1.2.3 Modularity of Spread architecture. 4

1.3 Spread Guarantees. 4
1.3.1 Ordering . 5
1.3.2 Reliability. 6

1.4 Additional Information . 6

2 Installing and Configuring Spread 7
2.1 Installing Spread . 7

2.1.1 Downloading. 7
2.1.2 Installing a binary distribution. 7
2.1.3 Installing a source distribution. 8

2.2 Configuring Spread. 9
2.2.1 Planning a Spread Network. 9
2.2.2 Creating a Configuration File. 9

2.3 Running the Daemon and Clients. 15
2.3.1 Running the Monitor. 16

2.4 Tuning Spread for Performance or Unique Situations. 18
2.4.1 Membership timeouts. 18
2.4.2 Spread in high-load environments. 19
2.4.3 Dealing with bursty application traffic. 20
2.4.4 Changing the number of daemons per segment. 21

3 Spread C API 23
3.1 Introduction. 23

3.1.1 Short Buffer Handling. 23
3.2 API Datatypes. 25
3.3 SPFunctions . 25

3.3.1 SPconnect . 25

iii

iv CONTENTS

3.3.2 SPdisconnect. 27
3.3.3 SPjoin . 27
3.3.4 SPleave . 27
3.3.5 SPmulticast and family 28
3.3.6 SPreceive and SPscatreceive. 30
3.3.7 SPequalgroup ids . 34

3.4 Miscellaneous Functions. 34

4 Spread Java API 35
4.1 Introduction. 35
4.2 API Datatypes. 36
4.3 Spread Classes. 36

4.3.1 SpreadConnection. 36
4.3.2 SpreadMessage Class. 39
4.3.3 SpreadGroup Class. 40
4.3.4 MembershipInfo Class. 41

4.4 Factory Classes. 41
4.4.1 MessageFactory. 41

4.5 Exceptions. 41
4.6 Notes for Applets. 42
4.7 Miscellaneous Functions. 43

5 The Event Subsystem 45
5.1 Introduction. 45

5.1.1 Initialization and General Use. 45
5.2 Timekeeping Functions. 46
5.3 Queued Events. 46
5.4 Managing File Descriptors. 47

Chapter 1

Introduction to Spread

1.1 What is Spread?

When designing distributed applications one must make a number of architectural
choices. These choices include how communication between applications will be
handled, what the roles of each process will be, how dependent each machine is
on the others for operation of the application, etc. Part of what makes creating
reliable, high-performance, useful distributed applications hard is the number of
fundamental choices one must make and the complex interactions between each
choice.

The group communication model is a framework that provides both a physical
toolkit upon which to build and a model which limits the number of choices that
must be met. This model simplifies the task of constructing a reliable, correct
distributed application while still giving the user a powerful set of abstractions
upon which many different distributed applications can be built. It is certainly
true that not every application can be built using the group communication model,
and even if it could the negative characteristics of the model can make group
communications a bad choice. What group communications does do, however, is
make a large number of distributed applications easier to build and more powerful.
It is no different than any other higher level abstraction.

For example, one could build every network application by creating IP level
packets by hand, having the application provide packet checksums, multiplexing,
reliability, ordering, and flow control, but everyone realizes that although that is
the most powerful approach (and it is used for some specialized applications) in
almost every case you want to use a high level API like sockets and an established
network protocol like TCP.

The basic services provided by most group communication systems are:

1. Abstraction of a Group (a name representing a set of processes, all of whom
receive any messages sent to the Group).

2. Multicast of messages to a Group.

1

2 CHAPTER 1. INTRODUCTION TO SPREAD

3. Membership of a Group.

4. Reliable messages to a Group.

5. Ordering of messages sent to a Group.

6. Failure detection of members of the Group.

7. A strong semantic model of how messages are handled when changes to the
Group membership occur.

It should be obvious that the name “Group Communications System” is very
appropriate, as the concept of a “Group” is the fundamental abstraction of the
system. Once you have that abstraction all the other services make sense: knowing
who is in the group, talking to the group, knowing when someone leaves the group,
agreeing on an ordering of events in the group.

Here are a few distinct example applications that exhibit how the group com-
munication model provides a useful abstraction for a wide variety of distributed
applications.

• Service and machine monitoring. A number of machines export their status
to groups of interested monitors. Whenever failure occurs the monitors are
notified.

• Collaborative tools. Many different groups of participants each want to
share data, video and audio conferencing.

• DSM (Distributed Shared Memory). Sending pages of memory to machines
where it is needed using reliable multicast.

• Highly reliable services (such as air traffic control systems, stock exchanges,
military tracking and combat control systems). Services that involve com-
munication of information among numerous machines and people and have
high requirements for both availability and fault-tolerance.

• Replicated databases. A number of instances of a database exist in several
different locations. They must all be kept synchronized in such a way that a
client can query or update any of them and the results will be the same as if
only one copy existed.

1.2 Design Issues

1.2.1 Comparison with reliable IP-multicast

The service provided bySpreadand the service provided by many reliable IP-
multicast protocols have some features in common and some differing seman-
tics. The main area of overlap is that they both solve the problem of getting

1.2. DESIGN ISSUES 3

best-effort reliability when sending multicast messages for small to medium sized
groups. The key difference is that most reliable IP-multicast protocols aim to
be also solve that problem for very large groups, whileSpreaddoes not support
very large groups, but does provide a stronger model of reliability and additional
service such as ordering.

A practical difference is that reliable IP-multicast usually relies on a wide
area IP-multicast network (such as the mbone, or ISP support for multicast rout-
ing) while Spreadonly relies on point-to-point unicast IP support, and uses IP-
multicast only as a performance optimization.

One subtle distinction between reliable IP-multicast andSpread’s Reliable
service is thatSpreadintegrates a membership notification service into the stream
of messages. The membership notifications provide some knowledge of who ac-
tually received the reliable messages. The issue of membership is a key distinction
between the unicast, or point-to-point world of TCP/IP and multicast services. In
multicast it is often necessary to know “with whom” you are reliably communi-
cating since there is no obvious ’other party’ as in unicast.

1.2.2 Flexibility of services

The key question is at what level of granularity do you define services? GCS
allow a number of different levels of service and the application only pays for
those that it needs (to a large degree). The GCS primitives are very flexible and
many different applications can use them in different ways.

The goal ofSpread(not necessarily all GCS) is to support the broad middle
of applications. This includes those that need more than unreliable multicast or
multicast to millions of users, but don’t have extremely specialized needs such as
hard real-time requirements, hardware fault-tolerance, or esoteric reliability and
semantic models. The ideas of GCS have been extended to some of these extremes
(especially real-time and hardware assisted fault-tolerance), and have influenced
to a small degree the solutions being proposed to reliable multicast to millions of
users.

A number of people assert that it is an accepted truth that no one system or
protocol will work for all cases. This is essentially a truism. However, they often
mean by this that NO system or protocol will be very good for more then one
very narrow set of needs, and thus no one should even try to create a system
to support many different families of applications. I believe that to be a false
assumption because I have seen all of the applications listed above built using one
group communication system. All the applications built in this way have fulfilled
their requirements and performed well. That is not to say they could not have
been built in other ways that might work even better, but they did everything they
needed to and because of the standard abstractions and the support of an existing
toolkit were able to be built much faster and with more reliability. In essence,
the costs of custom designing the services that they needed instead of using the

4 CHAPTER 1. INTRODUCTION TO SPREAD

existing group communication abstractions and services would have been much
higher and the performance payoff would not be enough to overcome that.

1.2.3 Modularity of Spread architecture

Spreadis designed to be modular in two ways. First, at the network communi-
cation level,Spreadsupports multiple link protocols. Second,Spreadsupports
multiple client interfaces.

Group communication toolkits can be used in many different environments
with very different network infrastructures. These different networks can have
very different characteristics (latency, bandwidth, shared/point-to-point, native
multicast, routed).Spreadhas a modular API for link protocols that allow dif-
ferent protocols to be used for dissemination, reliability, and flow control with-
out changing the upper layer protocols at all. For example,Spreadcurrently has
three link protocols implemented in the base system. The first is called the Ring
protocol and it provides high throughput when used on a low latency local area
network of no more then about 30 daemons. The second uses TCP for transport
and provides stable transport over wide area networks in a point-to-point manner.
The third is called Hop and like TCP is used to cross wide area networks with
high latency and non-negligible loss, but it provides higher throughput and lower
message latency than TCP, and is more stable in high loss situations.

The client interfaces provided with Spread include native interfaces for Java
and C, and a Perl library that wraps the C interface. These interfaces are designed
to be consistent with the language’s normal idioms.Spreadnatively only provides
a toolkit level abstraction of group communication services. Higher level group
tools such as replication tools, wrappers of native networking interfaces, and client
specific tools can be implemented on top of the toolkit APIs. One detail is that
Spreadnatively supports the Extended Virtual Synchrony(EVS) model (more de-
tails on this are later), however another similar model is also very common, the
Virtual or View Synchrony model. To support either,Spreadprovides a special
client library which implements View Synchrony on top ofSpread’s native EVS
model.

1.3 Spread Guarantees

Spreadprovides several different types of messaging services to applications. In
addition to being able to send messages to entire groups of recipients and receiving
membership information about who is currently alive and reachable,Spreadpro-
vides both ordering and reliability guarantees.

When an application sends aSpreadmessage it chooses a level of service for
that message. The level of service selected controls what kind of ordering and
reliability are provided to that message. The application can choose a different

1.3. SPREAD GUARANTEES 5

level of service for each message that it sends.Spreadsupports 5 different levels
of service. Table1.1 shows the different types and what kind of ordering and
reliability guarantees they provide.

Spread Service Type Ordering Reliability

UNRELIABLE MESS None Unreliable
RELIABLE MESS None Reliable
FIFO MESS Fifo by Sender Reliable
CAUSAL MESS Causal (Lamport) Reliable
AGREED MESS Total Order (Consistent w/Causal) Reliable
SAFE MESS Total Order Safe

Table 1.1: Spread Message Service Types

1.3.1 Ordering

The ordering guarantees defined bySpreadare:

None No ordering guarantee. Any other message also sent with ordering “None”
can arrive either before or after this one. Messages with stricter ordering
CAN depend on this message. For example, if a FIFOMESS messageMa

follows RELIABLE MESS messageMb thenMa cannot be delivered until
Ma has been delivered (but the reverse is not true).

Fifo by Sender All messages sent by this sender1 of at least Fifo ordering are
delivered in FIFO order. As mentioned above a RELIABLEMESS sent
after a Fifo message may be delivered before the Fifo message.

Causal (Lamport) All messages sent by all senders are delivered in an order con-
sistent with Lamport’s definition of “Causal” order. This order is consistent
with Fifo ordering.

Total Order (Consistent w/Causal All messages sent by all senders are deliv-
ered in the exact same order to all recipients. This order is also consistent
with Causal order. It is provided by making the partial order defined by
causal into a total order. The total order uses the id of the sender to break
ties.

It is important to note that messages sent with Fifo ordering or less do not sup-
port the full membership semantics ofSpread. This is a result ofSpreadoptimiz-
ing two common operations, group joins and leaves and sending FIFO or Reliable

1A sender is defined as a particular connection to aSpreaddaemon, so an application with 3
connections will be considered 3 different senders

6 CHAPTER 1. INTRODUCTION TO SPREAD

messages. First, joins and leaves of group members do not cost more then send-
ing one SAFE message and result in no extra synchronization costs. Second, Fifo
and Reliable messages are not delayed before delivery by any other messages. So
even if gaps exist in the global order of all messages, Reliable messages can still
be delivered and Fifo messages can be delivered as long as all the messages from
their sender have arrived. Because of these two optimizations, it is possible for a
Reliable or Fifo message to be delivered earlier then it would be if it was globally
ordered, however a gap in the global sequence may contain a join or leave mes-
sage (since they are just SAFE messages) so it might be that one process delivers
the Fifo or Reliable message before the join and a different process delivers the
join first and then the message.

1.3.2 Reliability

The Reliability guarantees defined bySpreadare:

Unreliable The message is unreliable. It may be dropped or lost and will not be
recovered bySpread.

Reliable The message will be reliably delivered to all recipients who are mem-
bers of the group to which the message was sent.Spreadwill recover the
message to overcome any network losses.

Safe The message will ONLY be delivered to a recipient if the daemon that re-
cipient is connected to knows that allSpreaddaemons have the message. If
a membership change occurs, and as a result the daemon cannot determine
whether all daemons in the old membership have the message, then the
daemon will deliver the Safe message after aTRANSITIONAL MEMBERSHIP

message.

1.4 Additional Information

Spreadis actively developed by the Center for Networking and Distributed Sys-
tems at Johns Hopkins University. The software, documentation, community of
users, and additional applications are constantly being improved and evolving.
The best way to find out what is currently going on, or learn more about the
Spreadsystem is to check out our web sites:
http://www.cnds.jhu.edu/
http://www.spread.org/

A number of research papers have been published on theSpreadsystem and
related projects. A complete list can be found on the web.

http://www.cnds.jhu.edu/
http://www.spread.org/

Chapter 2

Installing and Configuring Spread

2.1 Installing Spread

Spreadis a fairly simple software package to install. The runtime components are
just one executable calledspread and a configuration file located somewhere
theSpreaddaemon can find it. DevelopingSpreadapplications requires also in-
stalling two libraries and some header files. Finally, theSpreaddocumentation
consists of a set of man pages which are installed in the usual location and some
other documentation files, such as README files, html documentation, and on-
line books, which can be installed wherever is convenient.

2.1.1 Downloading

Spreadcan be downloaded fromhttp://www.spread.org/ or http://
www.cnds.jhu.edu/ .

2.1.2 Installing a binary distribution

We recommend that if you are experimenting with spread you create a special
’spread’ directory (for example /usr/local/spread or /opt/spread) and keep all the
files together there so things are easier to find. This also makes it easier to run
multiple architectures as the binaries for each are in their own subdirectory. This
is not necessary though. You can create that directory anywhere (e.g. your own
directory).

If you are installing spread for active use it is probably easier to just install
the correct version of the binaries, headers, man pages, and libraries into your
standard locations. The directions below assume you are doing this.

1. Unpack the spread.tar.gz file into a temporary directory

2. Look at the Readme for any updates

7

http://www.spread.org/
http://www.cnds.jhu.edu/
http://www.cnds.jhu.edu/

8 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

3. Select the appropriate architecture:

arch-bsdi
arch-sgi
arch-sunos
arch-sunsol
arch-pcsol
arch-linux
arch-freebsd

4. Type ’make arch-????’ with your architecture as the option to make.

5. Now you need to copy the files, I will assume you use /usr/local/bin,include,lib,man.
Replace ”ARCH” with the directory for your architecture.

cp -p include/* /usr/local/include/
cp -p ARCH/libspread.a /usr/local/lib/
cp -p ARCH/libtspread.a /usr/local/lib/
cp -p ARCH/spread /usr/local/bin/
cp -p ARCH/monitor /usr/local/bin/
cp -p ARCH/user /usr/local/bin/
cp -p ARCH/tuser /usr/local/bin/
cp -p ARCH/simple_user /usr/local/bin/
cp -p ARCH/flooder /usr/local/bin/
cp -p docs/*.3 /usr/local/man/man3/
cp -p docs/*.1 /usr/local/man/man1/

6. To runSpreadyou need a configuration file. See Section2.2.

To use the Java classes and examples you need to have a copy of the main
’spread’ daemon running. Then the spread/*.class files gives you the equivalent
of the libspread.a as a package of java classes. The user.java, user.html, and
user.class files give you a demonstration applet and source code. The tree.html
AllNames.html and packages.html give some documentation for the java inter-
face.

For Windows (95/NT) systems use the spread.exe daemon and the libspread.lib
or libtspread.lib to link with your programs.

2.1.3 Installing a source distribution

The source install is uses the standard autoconf and make tools on Unix like sys-
tems and a set of Visual C++ project files on Windows. Generally Spread should
build on almost any Unix-like system or any other OS that has standard BSD
socket support. See the file PORTING for hints on porting.

2.2. CONFIGURING SPREAD 9

From the directory where you unpacked the Spread source distribution do the
following:

1. Run “./configure” If you want the binaries and libraries to be installed some-
where other then /usr/local/, pass configure a –prefix=/my/location/path op-
tion.

2. Run “make”

3. If you want to install the binaries into your standard system locations, change
to a privledged user and run “make install” Otherwise, run “make install”
as the user you want to install Spread as.

2.2 Configuring Spread

Spread requires some configuration to be able to run. The daemons rely on a
configuration file to both set any runtime variables and to specify the location of
all the other potential daemons in the network.

2.2.1 Planning a Spread Network

A sample configuration is found in Fig2.1 for a one siteSpreadnetwork and in
Fig 2.2 for a two siteSpreadnetwork where the sites are directly connected (i.e.
they do not have to cross the public Internet). Fig2.3 shows the most generic
network configuration where there are several local area networks connected over
the Internet.

In Fig 2.1the sample IP addresses are from the reserved private address space
(192.168.*.*). This is ONLY possible inSpreadwhen all the applications that will
connect toSpreadare also on machines located in the same private IP address
space.1 Normally, all interfaces used bySpreadneed to have public, valid IP
addresses. For the rest of the examples I use real addresses which are missing the
first byte (it is replaced by anx).

2.2.2 Creating a Configuration File

A good starting point for your configuration file is the sample file, calledsample.spread.conf
included with all distributions of spread. The file is commented and gives basic
instructions on modifying it. The configuration file can be located in the current
working directory from which you run thespread executable, it can be located

1It might be possible to have a masquerading router in front of the entire cluster where the
router re-maps external client TCP connections to the internal private IP addresses of the servers.
This architecture is probably only useful in a certain limited class of applications.

10 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

192.168.1.22

192.168.1.20
192.168.1.23

192.168.1.24

192.168.1.21

192.168.1.25

InternetRouter

Figure 2.1: Sample Network with one site

x.32.49.22

x.32.49.20
x.32.49.23

x.32.49.24

x.32.49.21

x.32.49.25

Internet

x.32.50.20
x.32.50.23

x.32.50.24

x.32.50.25

Router

x.32.50.21

x.32.50.22

Router

x.32.49.1 x.32.50.1

Figure 2.2: Sample Network with two sites directly connected

2.2. CONFIGURING SPREAD 11

Internet

x.32.51.22

x.32.51.20
x.32.51.23

x.32.51.24

x.32.51.21

x.32.51.25

Router
x.32.51.1

x.32.52.22

x.32.52.20
x.32.52.23

x.32.52.24

x.32.52.21

x.32.52.25

Router
x.32.52.1

x.32.49.22

x.32.49.20
x.32.49.23

x.32.49.24

x.32.49.21

x.32.49.25

Router
x.32.49.1

x.32.50.20
x.32.50.23

x.32.50.24

x.32.50.25

x.32.50.21

x.32.50.22

Router
x.32.50.1

Figure 2.3: Sample Network with four sites connected over the Internet

12 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

1 Spread_Segment 192.168.1.255:3333 {
2 machine1 192.168.1.20
3 machine2 192.168.1.21
4 machine3 192.168.1.22
5 machine4 192.168.1.23
6 machine5 192.168.1.24
7 machine6 192.168.1.25
8 }

Figure 2.4: Sample configuration file for one site

1 Spread_Segment x.32.49.255:3333 {
2 machine1 x.32.49.20
3 machine2 x.32.49.21
4 machine3 x.32.49.22
5 machine4 x.32.49.23
6 machine5 x.32.49.24
7 machine6 x.32.49.25
8 }
9 Spread_Segment x.32.50.255:3333 {

10 machineB1 x.32.50.20
11 machineB2 x.32.50.21
12 machineB3 x.32.50.22
13 machineB4 x.32.50.23
14 machineB5 x.32.50.24
15 machineB6 x.32.50.25
16 }

Figure 2.5: Sample configuration file for two sites directly connected

in /etc/, or it can be located anywhere and passed to thespread executable on
the command line with the-c option.

Some sample configuration files which are based on the sample network con-
figurations described earlier are provided here in Figure2.4, Figure2.5 and Fig-
ure2.6.

The configuration file can also contain option commands which allow the user
to change the daemon’s behavior at runtime. These options are shown in Fig-
ure 2.7. The options can appear anywhere in the configuration file outside of a
SpreadSegment.

TheDebugFlags option controls what logging and activity informationSpreadpro-
vides as it runs. Table2.1 shows the available flags and what they do. The flags
can also be negated by the ’!’ character, so the flags

DebugFlags = { ALL !DATA_LINK !EVENTS }

will print all log messages except those related to data-link or events. The PRINT
and EXIT flags should always be enabled for correct operation ofSpread.

The log messages are either printed to the screen of the console whereSpreadis
run or to the log file specified by theEventLogFile option. TheEventLogFile

2.2. CONFIGURING SPREAD 13

1 Spread_Segment x.32.49.255:3333 {
2 machine1 x.32.49.20
3 machine2 x.32.49.21
4 machine3 x.32.49.22
5 machine4 x.32.49.23
6 machine5 x.32.49.24
7 machine6 x.32.49.25
8 }
9 Spread_Segment x.32.50.255:3333 {

10 machineB1 x.32.50.20
11 machineB2 x.32.50.21
12 machineB3 x.32.50.22
13 machineB4 x.32.50.23
14 machineB5 x.32.50.24
15 machineB6 x.32.50.25
16 }
17 Spread_Segment x.32.51.255:3333 {
18 machineC1 x.32.51.20
19 machineC2 x.32.51.21
20 machineC3 x.32.51.22
21 machineC4 x.32.51.23
22 machineC5 x.32.51.24
23 machineC6 x.32.51.25
24 }
25 Spread_Segment x.32.52.255:3333 {
26 machineD1 x.32.52.20
27 machineD2 x.32.52.21
28 machineD3 x.32.52.22
29 machineD4 x.32.52.23
30 machineD5 x.32.52.24
31 machineD6 x.32.52.25
32 }

Figure 2.6: Sample configuration file for four sites connected by the Internet

1 DebugFlags = { PRINT EXIT }
2 EventLogFile = testlog.out
3 #EventLogFile = spread_%h.log
4 EventTimeStamp = "[%a %d %b %Y %H:%M:%S]"
5 DangerousMonitor = false
6 #SocketPortReuse = AUTO
7 #RuntimeDir = /var/run/spread
8 #DaemonUser = spread
9 #DaemonGroup = spread

Figure 2.7: Sample configuration file options

14 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

Flag Function

PRINT General info that should always be printed.
EXIT Errors or other events that cause Spread to quit.
DEBUG Debugging information.
DATA LINK Lowest level of sending and receiving datagrams.
NETWORK Packing messages and setting who to talk with.
PROTOCOL Ordering, Token handling, and delivery algorithms.
SESSION Per user connection management.
CONFIGURATION Parsing and loading configuration file.
MEMBERSHIP State and messages sent during membership changes.
FLOW CONTROL Flow control state of the ring.
STATUS Reporting of status information to the monitor.
EVENTS All events (timed, fd based) and main loop.
GROUPS Group state and group membership changes.
MEMORY Memory debugging and allocation.
SKIPLIST State of data structure.
ALL Enables all flags.
NONE Disables all flags.

Table 2.1: Available Debug flags for configuration file

filename can contain the special string’%h’ which will be replaced with the host-
name of the machine running theSpreaddaemon. This makes it easy to have one
configuration file which multiple daemons will use from the same NFS mounted
filesystem. An example is shown in Figure2.7 in line 3.

The log messages will be prefixed with a timestamp string if theEventTimeStamp

option is enabled. The timestamp has a default format similar to most log times-
tamps. The format can be customized by settingEventTimeStamp equal to a
format string as shown in Figure2.7.

The SocketPortReuse option allows one to choose when the SOREUSEADDR
socket option is used on TCP sockets opened up by Spread. When a TCP socket
is open in a server and clients are connected, if the server crashes or goes down
without cleanly closing off all of the client TCP connections, some connections
can be left in “TIMEWAIT” state on the server which will prevent the server from
restarting (the bind to the TCP socket will fail) for about 2 minutes (the timeout
on TIME WAIT state). In an environment where you desire to restart the servers
immediately in the event of a crash or shutdown, this 2 minute wait is clearly
undesirable. The SOREUSEADDR socket option allows the daemon to restart
immediately, even if some connections are still in TIMEWAIT state. However,
as a consequence of how it does this, it may also allow OTHER programs to bind
to the same port number and interface as Spread is bound to and possibly steal the
messages destined for Spread.

2.3. RUNNING THE DAEMON AND CLIENTS 15

This is a potentially serious security issue as it could allow a user who has
access to the machine running the Spread daemon to capture Spread traffic, or
interfere with the correct functioning of Spread. This security issue is well known
in the Operating system and Internet community and a number of operating sys-
tems have modified the SOREUSEADDR option to minimize of avoid the security
issues while maintaining it’s useful properties. So in many cases it is safe to en-
able the SocketPortReuse option, and the default that Spread ships with is AUTO.
In AUTO setting the SORESUSEADDR option is enabled when Spread is con-
figured in the spread.conf file to only bind to specific interfaces, and is disabled
when Spread binds to INADDRANY (where no specific interfaces are specified
in the spread.conf file). We believe this is a safe option as the security issue only
arises when a program binds to INADDRANY.

If you know you are running on an operating system which has a secure im-
plementation of SOREUSEADDR, or you do not allow any non-trusted users to
run programs on the same machines as Spread daemons run on, you can set this to
“On” and the daemon will always use this option to allow fast restarts. If you want
to disable this option completely so the daemon willNeveruse the SOREUSE-
ADDR option, set this to “Off”.

The RuntimeDir, DaemonUser and DaemonGroup options allow runtime con-
figuration of the file system location and uid/gid combination that Spread runs
itself as when it is executed with root privledges. This option only applies to
Unix-like operating systems. When executed with root privledges, Spread will
change to the specified directory in the file system and use thechroot system
call to change it’s/ directory to be that directory. It will then drop all of it’s
privledges and continue to run as the user and group specified. Spread does both
of these actionsafter reading in it’s config file and opening the specified log file,
so both files can exist outside of the RuntimeDir directory. No files need to be
installed in this directory tree.

2.3 Running the Daemon and Clients

To get help on running any program distributed withSpread, just type the pro-
grams name followed byusage . For example to if you run the command:

> ./spuser usage
Usage: spuser

[-u <user name>] : unique (in this machine) user name
[-s <address>] : either port or port@machine

you get the command line options to thespuser program.
Thespread executable is usually run in the background with standard output

and error redirected to/dev/null on Unix machines.

16 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

2.3.1 Running the Monitor

Thespmonitor program can be useful for gathering information about how the
Spreaddaemons are working and detecting some problems. It can also be used as
a management tool to terminate daemons or adjust their flow control parameters.

As a basic security feature the daemons will only accept commands from a
monitor process which is run on a machine in the configuration file used by the
daemon. Since monitor commands include the ability to tell the daemon to quit,
at least this type of restriction is required. Currently, the way the restriction is im-
plemented only stops someone who does not try to impersonate a different source
IP address.

The recommended way to protect yourSpreadcluster from rouge monitors is
to set theDangerousMonitor option tofalse in thespread.conf file. Then
the partition, kill and flowcontrol commands in the monitor are disabled on the
daemon side. So the daemon will ignore any monitor requests to do those actions
no matter where they come from.

The DangerousMonitor setting is defaulted to FALSE in version 3.13. If
you need to use the partition, flowcontrol or kill commands you will need to
enable them by settingDangerousMonitor to true in your configuration file.

The monitor can take three command line options as shown below.

Usage: spmonitor
[-p <port number>]: specify port number
[-n <proc name>] : force computer name
[-t <status timeout>]: specify number of seconds between status queries
[-c <file name>] : specify configuration file

Thespmonitor program will look for a file calledspread.conf in three loca-
tions: first, wherever the-c command line option give if it is used, second in the
directory it is started from, and third in /etc/.

Once it has loaded the configuration file, monitor will give a brief text menu
and prompt as shown in figure2.8. You can then select what you want to do and
to which daemons you want the command sent. The most common command will
be to send a daemon a status query. The results of that query will look something
like Figure2.9. Some of the more interesting and useful information returned in
this status report are:

1. Line 1: The state and gstate should both be 1 during normal operation.
Other values indicate a membership change is occuring.

2. Line 1: The “after 116 seconds” gives the time this daemon has been alive.

3. Line 2: Gives the total number of alive daemons and how many different
segments they are in.

4. Line 3: The rounds value is the number of times the token has revolved
around the daemons.

2.3. RUNNING THE DAEMON AND CLIENTS 17

=============
Monitor Menu:

0. Activate/Deactivate Status {all, none, Proc, CR}

1. Define Partition
2. Send Partition
3. Review Partition
4. Cancel Partition Effects

5. Define Flow Control
6. Send Flow Control
7. Review Flow Control

8. Terminate Spread Daemons {all, none, Proc, CR}

9. Exit

Monitor>

Figure 2.8: Monitor menus

1 Status at tesseract V3.13 (state 1, gstate 1) after 116 seconds :
2 Membership : 1 procs in 1 segments, leader is tesseract
3 rounds : 1598 tok_hurry : 66 memb change: 1
4 sent pack: 14 recv pack : 0 retrans : 0
5 u retrans: 0 s retrans : 0 b retrans : 0
6 My_aru : 14 Aru : 14 Highest seq: 14
7 Sessions : 0 Groups : 0 Window : 60
8 Deliver M: 12 Deliver Pk: 14 Pers Window: 15
9 Delta Mes: 0 Delta Pack: 0 Delta sec : 10

10 ==================================

Figure 2.9: Monitor Status Report

18 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

5. Line 4: Sent pack and recv pack give the cumulative number of actual pack-
ets sent or received.

6. Line 4/5: A large number of retransmissions of any time (retrans = u retrans
+ s retrans + b retrans) is obviously bad.

7. Line 7: The Sessions is the number of locally connected clients.

8. Line 7: The Groups is the total number of groups that currently exist in the
system.

9. Line 7/8: Window is the flow control window limiting how many pack-
ets are sent each token revolution, Pers Window limits each daemon from
initiating more then that number of packets each time it gets the token.

10. Line 8: Deliver M is really “Deliver Messages” and is the cumulative total
number of messages this daemon has been able to deliver.

11. Line 8: Deliver Pk is really “Deliver Packets” and is the cumulative total
number of packets (a message may contain multiple packets) this daemon
has delivered.

12. Line 9: Delta Mess and Delta Pack are the changes in the delivered message
and packet counters since the last status query was sent.

13. Line 10: Delta sec gives the time between this status query and the last one.

2.4 Tuning Spread for Performance or Unique Situ-
ations

The binary distribution and the source code as distributed are tuned to work un-
der almost any situation and networking environment. As a result, they are not
tuned for the highest performance, the fastest fail-over, or the most scalability.
To useSpreadmost effectively in production environments some tuning is often
necessary.

This section will address general tuning information first and then provide
solutions to several standard problems that we have encountered.

2.4.1 Membership timeouts

The defaultSpreadmembership algorithm uses several timeout values to deter-
mine how long to wait before determining a failure has occured, how long to keep
searching for more members during a change, and how often to look for new
members. There are two default sets of values, one is used when the configuration

2.4. TUNING SPREAD FOR PERFORMANCE OR UNIQUE SITUATIONS19

only includes one segment and the other is used when more then one segment
are currently active. The current values are shown below from lines 128-151 of
membership.c.

if(Wide_network)
{

Token_timeout.sec = 20; Token_timeout.usec = 0;
Hurry_timeout.sec = 6; Hurry_timeout.usec = 0;

Alive_timeout.sec = 1; Alive_timeout.usec = 0;
Join_timeout.sec = 1; Join_timeout.usec = 0;
Rep_timeout.sec = 5; Rep_timeout.usec = 0;
Seg_timeout.sec = 2; Seg_timeout.usec = 0;
Gather_timeout.sec = 10; Gather_timeout.usec = 0;
Form_timeout.sec = 10; Form_timeout.usec = 0;
Lookup_timeout.sec = 90; Lookup_timeout.usec = 0;

}else{
Token_timeout.sec = 5; Token_timeout.usec = 0;
Hurry_timeout.sec = 2; Hurry_timeout.usec = 0;

Alive_timeout.sec = 1; Alive_timeout.usec = 0;
Join_timeout.sec = 1; Join_timeout.usec = 0;
Rep_timeout.sec = 2; Rep_timeout.usec = 500000;
Seg_timeout.sec = 2; Seg_timeout.usec = 0;
Gather_timeout.sec = 5; Gather_timeout.usec = 0;
Form_timeout.sec = 5; Form_timeout.usec = 0;
Lookup_timeout.sec = 60; Lookup_timeout.usec = 0;

}

In a small local area configuration of daemons these values can be decreased
significantly to improve fault detection time as long as the proportions are kept the
same and a few other constrainst are maintained. Basically, the smallest timeout
should not be less than twice the standard kernel scheduling delay (often 10-20ms)
plus twice the packet latency of the network. Also, the smallest timeout should
increase as the number of daemons increases.

The Token, Gather, and Form timeouts should be sufficient to allow a full
rotation of the token (so each machine gets it and has time to do some work while
holding it) plus some slack for an occasional retransmission or delay. You do not
want to trigger token loss timeouts without being sure you really lost it because
they have a significant cost in reforming an membership. The Lookup timeout
determines how often the leader of an active membership probes to find other
possible active daemons who are not part of the leader’s current membership.

2.4.2 Spread in high-load environments

If the machines running the daemons are heavily loaded (say with loads of 10 or
higher) it is more difficult forSpreadto work well. This is becauseSpreadis
performing real-time routing and messaging as a user-level program. When the
load is highSpreadis able to be scheduled onto the CPU less and less often. Since
all the daemons in the membership rely on all the others to quickly process the
token, send out new packets and then forward the token on, if even one machine is

20 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

heavily loaded the token will be significantly slowed and allSpreaddaemons will
be slowed. When the load gets very high (over 30, or less on a large configuration),
these delays can even cause spurious membership changes as the daemons think
the token was lost, even though it is just slow because of the delays.

The best solution so far for this situation is to make some of the following
three changes.

First, modify the timeouts as described in Section2.4.1to be larger. Especially
increase the Tokentimeout and Formtimeout to be at least several seconds larger
then the longest average time a token takes to get to all the machines. For example,
if because of scheduling delays each daemon takes 300 ms to get the cpu when a
token arrives, then allow at least 350 ms per daemon. So with 30 machines you
will want 11 seconds plus a few so maybe 15 second timeout for the Token. One
way to calculate this delay is to run the monitor and query one machine every
second watching the token-rounds variable. See how many seconds it takes for
one round of the token to occur under the highest load you normally experience.
Then add a few seconds and use that as your timeout.

Second, run theSpreaddaemon with real-time scheduling priority.2 This is
standard on all unixes (and can also be done on Windows), and is quite simple.
This will give Spreadthe first chance at the CPU whenever it needs it. The costs of
this are straightforward. First it requires root privilege on the machine the daemon
runs on, and second ifSpreadfor some reason becomes a runaway process not
releasing the CPU it is impossible to stop unless you also have a shell set to a
higher real-time scheduling priority. We have never seenSpreadrunaway with
CPU and it is very unlikely a bug could cause it because of the event based design
of Spread.

Third, use the monitor to adjust the flow control parameters of the token. Since
each token rotates much slower under high load then under light load the dae-
mons are sending fewer messages per second on the network. If the load is high
but spare bandwidth on the network is available, you could try increasing the
number of packets each daemon is allowed to send when it gets the token (the
Personalwindow of each daemon) and the total number of packets that can be
sent during each rotation of the token (the Window).

2.4.3 Dealing with bursty application traffic

Sometimes an application will have a bursty pattern of generating traffic. This has
many possible causes, but the result is that you want theSpreaddaemon to accept
somewhat more messages then it can really handle at any one time. Of course, if
you continually send faster then the underlying network andSpreadcan handle the
daemon will have to block the senders, but when the average rate is manageable

2A small program to give the daemon real-time scheduling priority can be found at our web
sitehttp://www.spread.org/software/

http://www.spread.org/software/

2.4. TUNING SPREAD FOR PERFORMANCE OR UNIQUE SITUATIONS21

but bursts are higher some buffering by the daemon can help significantly.
Two specific values can be of use in tuning the available buffering. The first

is the WATERMARK variable defined in thespread params.h file. This setsspread params.h

the number of messagesSpreadwill accept from all client connections, without
sending them on, before blocking the applications. OnceSpreadhas actually sent
some of the messages onto the network it will unblock the applications.

The second is the number of buffers thatSpreadwill keep for each receiver
when delivering messages. If the client application is not calling SPreceive suf-
ficiently often to keep up with the number of messages being delivered to it then
Spreadwill buffer upto MAX SESSIONMESSAGES. spread params.h

2.4.4 Changing the number of daemons per segment

By defaultSpreadis compiled to support a maximum of 128 machines per seg-
ment and up to 20 segments with a total of 128 machines at most in a config-
uration. The 128 machine limit is a hard limit and the protocol has never been
tested with more than 50-60 daemons. The parameters that control these limits are
MAXPROCSSEGMENT, MAXSEGMENTS, MAXPROCSRING in spread params.h .
MAXPROCSRING can never be more than 128, so there is not much point in
changing it. However if you want to only allow one big segment you could
changeMAXSEGMENTSto 1. Or if you want more then 20 segments (say 25),
each of which has only a few machines, you could setMAXSEGMENTSto 25 and
MAXPROCSSEGMENTto 10.3

Spreadwill perform best when the configuration of machines into segments
matches the actual network configuration of the machines becauseSpreadas-
sumes that machines in one segment can be reached by a single broadcast and
have very low latency while multi-segment configurations are assumed to have
higher latency between segments and to not all be reachable by a broadcast. If a
collection of machines who are actually on one Ethernet segment are divided into
severalSpreadsegments then each data message sent will be sent multiple times
on the physical network, which is more inefficient than necessary.

3The only advantage of shrinking theMAXPROCSSEGMENTis a small decrease in the
required memory so in almost all cases you will not need to change this value.

22 CHAPTER 2. INSTALLING AND CONFIGURING SPREAD

Chapter 3

Spread C API

3.1 Introduction

3.1.1 Short Buffer Handling

It is the traditional behavior of networking APIs that when a user provided buffer
is insufficient, the API will provide as much data as possible and truncate the rest.
Sometimes the user receives a notice that some data was truncated and sometimes
no notification is given. Thus it is the user’s responsiblity to detect when data-
grams are too short and recover in some way (such as re-requesting data).

The difficulty with using this approach inSpreadis that when the application
has to recover from this some properties of the message are lost. For example,
if the message was a SAFE message, the other members can rightly assume that
either all the members will get the data or they will not get it because they crash
or disconnect fromSpread. In this case some members might get part of the data,
but have to recover the rest of it, also the data can be lost even when the process
continues to execute correctly which makes it difficult for the other members to
detect the fault.

Essentially because each message has attached meaning, such as ordering, or
reliability guarantees, unpredictable loss of data in an otherwise reliable system
compromises the very semantics we want to use. It is possible to check for this
loss and recover, but the costs are significant, especially when weighed against
the cost of avoiding the problem in the first place. Thus, unlike UDP datagrams,
Spreadmessages are designed to be reliable even with short buffers.

The method used is straightforward.Spreadwill never truncate large messages
unless you explicitly ask it to. When you call SPreceive with a data buffer or
groups list too short to hold all the data, the SPreceive function will return with
an error code of GROUPSTOO SHORT or BUFFERTOO SHORT andNOdata
or groups will be returned. The only information that will be returned is in the
following parameters:

23

24 CHAPTER 3. SPREAD C API

service type set to the correct type for the message.

sender is empty.

num groups set to the number of groups thegroupsparameter needs to
accept to avoid a GROUPSTOO SHORT error. This num-
ber is returned as a negative number. If thegroupsparameter
was large enough thenumgroupsfield will be 0.

groups is empty.

mess type set to the message type field the application sent with the
original message, this is only a short int (16bits). This value
is already endian corrected before the application receives it.

endian mismatch set to the size, in bytes, of the data buffers needed to com-
pletely receive this message and avoid a BUFFERSTOO SHORT
error. This number is returned as a negative number. If
the data buffers provided were large enough then theen-
dian mismatchfield will be set to 0.

mess is empty.

So, when SPreceive returns one of the *TOO SHORT errors you can exam-
ine theservicetypeandmesstypefields to get some information about what kind of
messageSpreadis trying to give you. You can then examine thenumgroupsand
endianmismatchfields to discover how large your buffers need to be. If either field
is set to 0 then that buffer was large enough and does not have to be increased.
Obviously this can only be true for one of the buffers since one of them was an
actual error. You then increase your application buffers and call SPreceive again.
It should return with the message and without error (unless something else is also
wrong).

This retry approach is safe with multi-threaded applications because each call
succeeds or fails on it’s own and if two threads retry for the same message, one
will get it and the other will get the message after it (which is what would happen
anyway if they were not retrying).

The retry approach does, however,requirethat the application check for errors
when calling SPreceive and if a *TOO SHORT error occurs they either enlarge
their buffers or call SPreceive again with the DROPRECV flag set, as described
below. If they either ignore errors or do not correct the short buffers, the applica-
tion will continually loop calling SPreceive and never receive anything.

If the application does not want to actually receive the entire data buffer or
groups list, it has the option of calling SPreceive with theservicetype field set
to the DROPRECV flag. When this is done,Spreadwill treat the message just
like most networking systems and return all the data and groups that will fit in the
available space and truncate the rest. It will still return an error value informing
the application that it has lost data. In simple applications or ones with relaxed, or

3.2. API DATATYPES 25

specialized requirements this might be more useful then having to check for error
values and retry the SPreceive.

3.2 API Datatypes

TheSpreadAPI uses only a few specific data types.

1 #define mailbox int
2 #define service int
3

4 #define MAX_SCATTER_ELEMENTS 100
5

6 typedef struct dummy_scat_element{
7 char *buf;
8 int len;
9 } scat_element;

10

11 typedef struct dummy_scatter{
12 int num_elements;
13 scat_element elements[MAX_SCATTER_ELEMENTS];
14 } scatter;
15

16 typedef struct dummy_group_id {
17 int32 id[3];
18 } group_id;

3.3 SPFunctions

3.3.1 SPconnect

#include<sp.h>
int SPconnect(const char *spreadname, const char *private name,

int priority, int group membership, mailbox * mbox,
char * private group);

SP connect is the initial call an application must make to establish a connec-
tion with a Spread daemon. All other spread calls must refer to a validmboxset
by this function (mbox is passed by reference).

Thespreadnameis the name of the Spread daemon to connect to. It should be
a string in one of the following forms:

4803 connect to the Spread daemon on the local ma-
chine using Unix Domain Sockets with socket on
/tmp/4803. This form cannot be used to connect
to a Windows95/NT machine.

4803@localhost connect to the Spread daemon on port 4803 of
the local machine through loopback TCP/IP. This
form can be used on Windows95/NT machines.

26 CHAPTER 3. SPREAD C API

4803@host.domain.edu connect to the machine identified by the domain
name “host.domain.edu” on port 4803.

4803@x.y.221.99 connect to the machine identified by the IP ad-
dress “x.y.221.99” on port 4803.

The private nameis the name this connection would like to be known as. It
must be unique on the machine running the spread daemon. The name can be of
at most MAX PRIVATE NAME characters with the same character restrictions
as a group name (mainly it cannot contain the ’#’ character).

Thepriority is a 0/1 flag for whether this connection will be a ”Priority” con-
nection or not. Currently this has no effect.

The group membershipis a boolean integer. If 1 then the application will re-
ceive group membership messages for this connection, if 0 then the application
will not receiveanymembership change messages.

The mboxshould be a pointer to a mailbox variable. After theSP connect

call returns this variable will hold the mbox for the connection.
The private group should be a pointer to a string big enough to hold at least

MAX GROUPNAME characters. After theSP connect call returns it will con-
tain the private group name of this connection. This group name can be used to
send unicast messages to this connection and no one can join this special group.

RETURN VALUES

ACCEPTSESSION on success.

ILLEGAL SPREAD spreadnamegiven to connect to was illegal for some
reason. Usually because it was a unix socket on
Windows95/NT, an improper format for a host or
an illegal port number

COULDNOTCONNECT lower level socket calls failed to allow a connection
to the specified spread daemon right now.

CONNECTIONCLOSED during communication to establish the connection
errors occured and the setup could not be completed.

REJECTVERSION the daemon or library has a version mismatch.

REJECTNONAME no user private name was provided.

REJECTILLEGAL NAME name provided violated some requirement (length
or used an illegal character)

REJECTNOTUNIQUE name provided is not unique on this daemon. Rec-
ommended response is to try again with a different
name.

3.3. SP FUNCTIONS 27

3.3.2 SPdisconnect

#include<sp.h>
int SPdisconnect(mailboxmbox);

SP disconnect should be called when the application is finished with a connec-
tion to the Spread daemon. The application may have other connections still open
to the daemon and may open a new connection after disconnecting.

Themboxshould be for the connection you wish to disconnect from.

RETURN VALUES

NORMAL returns 0 on success

ILLEGAL SESSION when the sessionmboxgiven is not a valid connection.

3.3.3 SPjoin

#include<sp.h>
int SP join(mailboxmbox, const char *group);

SP join joins a group with the name passed as the stringgroup. If the group does
not exist among the Spread daemons it is created, otherwise the existing group
with that name is joined.

Themboxof the connection upon which to join a group is the first parameter.
Thegroupstring represents the name of the group to join.

RETURN VALUES

NORMAL returns 0 on success.

ILLEGAL GROUP thegroupgiven to join was illegal for some reason. Usually
because it was of length 0 or length> MAX GROUPNAME

ILLEGAL SESSION the session specified bymboxis illegal. Usually because it
is not active.

CONNECTIONCLOSEDduring communication errors occured and the join could
not be initiated.

3.3.4 SPleave

#include<sp.h>
int SP leave(mailboxmbox, const char *group);

SP leave leaves a group with the name passed as the stringgroup. If the group

28 CHAPTER 3. SPREAD C API

does not exist among the Spread daemons this operation is ignored, otherwise the
group is left.

Themboxof the connection upon which to leave a group is the first parameter.
Thegroupstring represents the name of the group to leave.

RETURN VALUES

NORMAL returns 0 on success.

ILLEGAL GROUP thegroupgiven to leave was illegal for some reason. Usu-
ally because it was of length 0 or length> MAX GROUPNAME

ILLEGAL SESSION the session specified bymboxis illegal. Usually because it
is not active.

CONNECTIONCLOSEDduring communication errors occured and the leave could
not be initiated.

3.3.5 SPmulticast and family

#include<sp.h>
int SPmulticast(mailboxmbox, serviceservicetype, const char *group,

int16 messtype, int messlen, const char *mess);
int SPscatmulticast(mailboxmbox, serviceservicetype,

const char *group, int16messtype, const scatterscatmess);
int SPmultigroupmulticast(mailboxmbox , serviceservicetype,

int numgroups , const chargroups[][MAX GROUPNAME],
int16 messtype, int messlen, const char *mess);

int SPmultigroupscatmulticast(mailboxmbox, serviceservicetype,
int numgroups, const chargroups[][MAX GROUPNAME],
int16 messtype, const scatterscatmess);

SPmulticast and its variants all can send a message to one or more groups.
The message is sent on a particular connection and is marked as having come from
that connection. Theservicetype is a type field that should be set to the service
this message requires. The valid flags for messages are:

• UNRELIABLE MESS

• RELIABLE MESS

• FIFO MESS

• CAUSAL MESS

• AGREED MESS

3.3. SP FUNCTIONS 29

• SAFE MESS

This type can be bit ORed with other flags like SELFDISCARD if desired.
Currently SELFDISCARD is the only additional flag.

If the SP multicast or SP scat multicast versions are being used then
only one group can be sent to. So thegroup string should include the name of
the group to send to. If a multigroup varient is being used, then the groups are
specified by thenumgroups integer and the array of group names calledgroups
representing all the groups the message should be sent to. Each group has a string
name of no more then MAXGROUPNAME chars. The array should have at
least as many group names as the ’numgroups’ parameter indicates.

The Spread system will only send the message once but will deliver it to all
connections which have joined at least one of the groups listed.

The messtype is a short int (16 bits) which can be used by the application
arbitrarily. The intent is that it could be used to NAME different kinds of data
messages so they can be differentiated without looking into the body of the mes-
sage. This value will be endian corrected before receiving.

If the non-scatter variants are being used, then a single buffer is passed to the
multicast call specifying the full message to be sent. Themesslen field gives the
length in bytes of the message. While themessfield is a pointer to the buffer
containing the message. For a scatter call, both of these are replaced with one
pointer,scatmess, to a scatter structure, which is just like an iovec. This allows
messages made up of several parts to be sent without an extra copy on systems
that support scatter-gather.

RETURN VALUES

NORMAL the number of bytes sent on success.

ILLEGAL SESSION themboxgiven to multicast on was illegal.

ILLEGAL MESSAGE the message had an illegal structure, like a scatter not
filled out correctly.

CONNECTIONCLOSEDduring communication to send the message errors oc-
cured and the send could not be completed.

30 CHAPTER 3. SPREAD C API

3.3.6 SPreceive and SPscat receive
sp.h

#include<sp.h>
int SP receive(mailboxmbox, service *servicetype,

charsender[MAXGROUPNAME], int maxgroups,
int * numgroups, chargroups[][MAX GROUPNAME],
int16 * messtype, int * endianmismatch, int maxmesslen,
char * mess);

int SPscatreceive(mailboxmbox, service *servicetype,
charsender[MAXGROUPNAME], int maxgroups,
int * numgroups, chargroups[][MAX GROUPNAME],
int16 * messtype, int * endianmismatch, scatter *scatmess);

SP receive is the general purpose receive function for the Spread toolkit.
This receives not only data messages, but also membership messages for the con-
nection. Messages for all groups joined on this connection will arrive to the same
mailbox, so a call toSP receive will get a single ’message’ from any one of the
groups. After the receive completes, a number of fields are set to values indicat-
ing meta information about the message (such as groups, messtype, endianness,
type, etc).

This function is the most complex used in Spread because it is the only way
for the system to return information to the application. The meaning of many
of the fields changes depending on whether the message is a data message or a
membership message.

TheSP receive function will block if no messages are available.
The mboxgives which connection to receive a message on.Servicetype is a

pointer to a variable of type ’service’ which will be set to the message type of
the message just received. This will be either a REGMESSAGE or MEMBER-
SHIP MESS, and the specific type.

The rest of the parameters differ in meaning depending on theservicetype. If
theservicetypeis a REGMESSAGE (i.e. data message) then:

sender a pointer to an array of characters of at least MAXGROUPNAME
size. This will be set to the name of the sending connec-
tion(its private group name).

max groups the maximum number of groups you have allocated space
for in the “groups” array passed to the receive function.

num groups a pointer to an int which will be set to the number of groups
set in the “groups” array. See Section3.1.1for details on this
field when the groups array is too small.

groups array holds uptomaxgroupsgroup names, each of which is
a string of at most MAXGROUPNAME characters. All
of the groups which are receiving this message will be listed

3.3. SP FUNCTIONS 31

here, unless the array is too small and you have chosen DROPRECV
semantics by setting that flag in theservicetypefield when
you calledSP receive . In that case as many group names
as can fit will be listed and thenumgroups value will be
set to be negative. For example, if your groups array could
store 5 group names, but a message for 7 groups arrived, the
first five group names would appear in thegroupsarray and
numgroupswould be set to 7.

mess type set to the message type field the application sent with the
original message, this is only a short int (16bits). This value
is already endian corrected before the application receives it.

endian mismatch set to true (1) if the endianness of the sending machine dif-
fers from that of this receiving machine. Otherwise set to
false (0). This field is handled in a special way when certain
errors are returned. See Section3.1.1for details on this field
when the message buffers are too small.

mess the actual message body being received is stored into this
buffer.

max mess len the length of themessbuffer in bytes. Messages larger then
the buffer size are handled in the usual way. See Section3.1.1
for details.

If the SP scat receive function is used instead of theSP receive function
then themessand maxmesslen fields are replaced by a singlescatmessscatter
structure. The scatter should be initialized to contain whatever buffers you wish
to receive into and their lengths. These buffers must be valid memory areas. They
will be filled in by the receive call in the order they are listed.

If this is a MEMB MESSAGE (i.e. membership message) and it is specifically
a TRANSMESS type membership message, than:

sender set to the name of the group for which the membership change
is occuring.

max groups not used.

max mess len not used.

num groups always set to 0.

groups is empty, since there are no normal groups for a transitional
membership. The sender field is used instead.

mess type set to -1.

endian mismatch set to zero since the transitional does not have any endian
issues.

32 CHAPTER 3. SPREAD C API

mess left empty.

So, in essence, the only information you get is thesenderfield which is set
to the group name that received a transitional membership change message. The
importance of the TRANSMEMB MESS is that it tells the application that all
messages received after it and before the REGMEMB MESS for the same group
are ’clean up’ messages to put the messages in a consistant state before actually
changing memberships. For more explanations of this please see other documen-
tation and research papers.

If this is a MEMB MESSAGE (i.e. membership message) and it is specifically
a REGMEMB MESS type membership message, then:

sender set to the name of the group for which the membership change
is occuring.

max groups same as regular message.

max mess len same as regular message.

mess type set to the index of this process in the array of group members.

endian mismatch set to 0 since there are no endian issues with regular mem-
berships.

num groups set to the number of members in the group after the change.

groups contains a deterministically ordered list of the private group
names of the members of the group after the change.

mess contains the identifier of this group membership and a list of
all the private group names of those processes which came
with your process from the old group membership into this
new membership.

The data buffer will include the following fixed length fields:

• group id;

• int num members;

• char transmembers[][MAX GROUPNAME];

The groups array will have nummembers group names, each of which is a
fixed length string. The content of the groups array is dependent upon the type of
the membership change:

CAUSEDBY JOIN: transmembers contains the private group of the
joining process.

CAUSEDBY LEAVE: transmembers contains the private group of the
leaving process.

3.3. SP FUNCTIONS 33

CAUSEDBY DISCONNECT: transmembers contains the private group of the
disconnecting process.

CAUSEDBY NETWORK: transmembers contains the group names of the
members of the new membership who came with
me(the current process) to the new membership.
Of course, allnew members can be determined
by comparing it with the groups parameter of the
SP receive call.

If this is a MEMB MESSAGE and it isneither a REGMEMB MESS
nor a TRANSMEMB MESS, then it represents exactly the situtation where
the member receiving this message has left a group and this is notifica-
tion that the leave has occured, thus it is sometimes called aself-leave
message. The simplest test for a self-leave message is if the message is
CAUSED BY LEAVE and REGMEMB MESS is FALSE then it is aself-leave
message. TRANSMEMB MESS never have a CAUSEDBY type because they
only serve to signal upto where SAFE delivery and AGREED delivery (with no
holes) is guaranteed in the completeold group membership.

The other members of the group this member just left will receive a normal
TRANS MEMB MESS, REGMEMB MESS pair as described above showing
the membership change.

The fields ofSP receive in the case of a self-leave will be as follows:

sender set to the name of the group for which the membership change
is occuring.

max groups same as for regular message.

max mess len same as for regular message.

mess type set to 0.

endian mismatch set to 0.

num groups set to 0.

groups will be empty. This is because this process is no longer part
of the group and thus has no knowledge of it.

mess contains the groupid of new membership and the private
group name of the member who just left. This name should
always be the private group name of the connection which
received this message.

The data buffer will include the following fixed length fields:

• group id;

• int num members;

34 CHAPTER 3. SPREAD C API

• char transmembers[][MAX GROUPNAME];

The transmembers array will have 1 group name containing the private group
name of the leaving process, since this case only occurs with a CAUSEDBY LEAVE
membership change.

RETURN VALUES

NORMAL Returns the size of the message received on success.

ILLEGAL SESSION themboxgiven to receive on was illegal.

ILLEGAL MESSAGE the message had an illegal structure, like a scatter not
filled out correctly.

CONNECTIONCLOSEDduring communication to receive the message commu-
nication errors occured and the receive could not be
completed.

BUFFERTOOSHORT the message body buffer was too short to hold the mes-
sage being received.

GROUPSTOOSHORT the groups buffer was too short to hold the groups list
or member list being received.

3.3.7 SPequal group ids
sp.h

#include<sp.h>
int SPequalgroup ids(groupid g1, groupid g2);

SP equal group ids provides a way to compare two groupid’s that origi-
nated in membership messages. Since a groupid is considered an opaque type
to the application programmer the only thing you can do with it is use it as an
identifier for a membership view and compare it with other groupids.

3.4 Miscellaneous Functions

Chapter 4

Spread Java API

4.1 Introduction

Writing1 Spread applications in Java is as simple and easy as writing Spread appli-
cations in C, but with the added benefits of the Java language. All of the function-
ality of the C interface to Spread is available when developing in Java, with some
extra tools and utilities. The Spread library consists of one package, ”spread”,
which contains ten classes. The main classes are SpreadConnection, which rep-
resents a connection to a deamon, SpreadGroup which represents a spread group,
and SpreadMessage, which represents a message that is either being sent or being
received with spread.

The Spread package is contained in a file, ”spread.jar”. To use Spread from a
Java application, this file should be in your classpath. For Java 1.1, this is done
by making sure the directory containing spread.jar is in the CLASSPATH env-
iornment variable. For Java2 this is done by using the ”-classpath” option on the
command line when compiling or running any classes that user Spread. For ap-
plets, simply put spread.jar in the same directory as the applet class. To access
the Spread classes from any classes you write, simply include the following line
at the top of the .java file:

import spread;

1A previous version of this chapter was written by Dan Schoenblum the original author of the
Spread Java Library

35

36 CHAPTER 4. SPREAD JAVA API

4.2 API Datatypes

4.3 Spread Classes

4.3.1 SpreadConnection

import spread;
SpreadConnection SpreadConnection();
connect(InetAddressspreadname, int port, StringprivateName,

booleanpriority, booleangroupMembership);
disconnect();
SpreadGroup getPrivateGroup();
multicast(SpreadMessagemessage);
multicast(SpreadMessagemessages[]);
SpreadMessage receive();
SpreadMessage[] receive(intnumMessages);
boolean poll();
add(BasicMessageListenerlistener);
add(AdvancedMessageListenerlistener);
remove(BasicMessageListenerlistener);
remove(AdvancedMessageListenerlistener);

To establish a connection to a spread daemon, use the SpreadConnection class.
First, create a new SpreadConnection object, then use the connect() method to
make a connection to a daemon:

SpreadConnection connection = new SpreadConnection();
connection.connect(InetAddress.getByName("daemon.address.com"), 0,

"privatename", false, false);

Figure 4.1:Establishing a Java connection to Spread

The first argument to connect() is an InetAddress, which is a class in the pack-
age java.net. The static method InetAddress.getByName() takes one argument,
a String object specifying an Internet address, and returns an InetAddress object
representing that address. The address can be passed either by name or by IP
(A.B.C.D). Alternatively, if null is passed as the first argument to connect(), an
attempt will be made to connect to a daemon on the localhost. The second argu-
ment to connect() is the port to connect to. If this is 0, the default port (4803) will
be used.

The private nameis the name this connection would like to be known as. It
must be unique on the machine running the spread daemon. The name can be of

4.3. SPREAD CLASSES 37

at most MAX PRIVATE NAME characters with the same character restrictions
as a group name (mainly it cannot contain the ’#’ character).

Thepriority is a 0/1 flag for whether this connection will be a ”Priority” con-
nection or not. Currently this has no effect.

The group membershipis a boolean integer. If 1 then the application will re-
ceive group membership messages for this connection, if 0 then the application
will not receiveanymembership change messages.

This connection can be used until the disconnect() method is called, which
terminates the connection to the daemon.

Aside from adding and removing listeners, no methods should be called on a
SpreadConnection before connect() is called.

The private group should be a pointer to a string big enough to hold at least
MAX GROUPNAME characters. After the Connect call returns it will contain
the private group name of this connection. This group name can be used to send
unicast messages to this connection and no one can join this special group.

To receive a message, use SpreadConnection’s receive() method. receive() will
block until a message is available. When one is ready to be received, the message
will be read and placed into a new SpreadMessage object which is returned by
receive().

The isRegular() method can be used to check if the message is a regular mes-
sage. Otherwise, it is a membership message. Membership messages will only
be received if they are request by passing true as the final arguement to Spread-
Connection’s connect() method. If the message is a regular message, the get*()
methods in SpreadMessage will provide more information about the message. If
the message is a membership message, the getMembershipInfo() method can be
used to return a MembershipInfo object, which provides information about the
membership change.

if(message.isRegular() == true)
System.out.println("New message from " + message.getSender());

else
System.out.println("New membership message from "

+ message.getMembershipInfo().getGroup());

Figure 4.2:Testing type of received Java Spread message

In addition to using SpreadConnection’s receive() method, there is another
way to receive messages. This is by the use of two interfaces: BasicMessage-
Listener and AdvancedMessageListener. To use a listener, first implement one of
these two interfaces. Then add them to a connection with one of SpreadConnec-
tion’s add() methods:

After being added to a connection, the listener will be alerted whenever a
new message is received on the connection. BasicMessageListener’s have one

38 CHAPTER 4. SPREAD JAVA API

callback method, messageReceived(), which is called whenever a new message
arrives. AdvancedMessageListener’s have two callback methods: regularMes-
sageReceived() is called whenever a regular message arrives, and membershipMes-
sageReceived() is called when a membership message arrives. These methods will
keep being called until the listener is removed from the connection with one of
SpreadConnection’s remove() methods:

There can be multiple listeners on a connection at any one time. SpreadCon-
nection’s receive() should not be called while the connection has any listeners.

4.3. SPREAD CLASSES 39

4.3.2 SpreadMessage Class

import spread;
SpreadMessage SpreadMessage();
boolean isIncoming()
boolean isOutgoing()
int getServiceType();
boolean isRegular();
boolean isMembership();
boolean isUnreliable();
boolean isReliable();
isFifo();
isCausal();
isAgreed();
isSafe();
isSelfDiscard();
SpreadGroup[] getGroups();
SpreadGroup getSender();
byte[] getData();
Object getObject();
Vector getDigest();
short getType();
boolean getEndianMismatch();
setServiceType(intserviceType);
setUnreliable();
setReliable()
setFifo();
setCausal();
setAgreed();
setSafe();
setSelfDiscard(booleanselfDiscard);
addGroup(SpreadGroupgroup);
addGroup(Stringgroup);
addGroups(SpreadGroupgroups[]);
addGroups(Stringgroups[]);
setData(byte[]data);
setObject(Serializableobject);
digest(Serializableobject);
setType(shorttype);
MembershipInfo getMembershipInfo();
Object clone();

To multicast a message to one or more groups, use the SpreadMessage class.

40 CHAPTER 4. SPREAD JAVA API

First, create a new SpreadMessage object. This creates a new outgoing message.
Next, the message data, the groups the message is going to, and the type of de-
livery requested should be set. This will use functions likesetData , addGroup ,
andsetReliable .

The setData() method sets the message’s data to an array of bytes. Alterna-
tives to setData() are setObject() and digest(), each of which takes an object that
implements the Serializable interface. setObject() is used for sending one Java ob-
ject, while repeatedly calling digest() can be used to send multiple objects in one
message. The addGroup() method is used to specify a group to send the message
to. The setReliable() is used to set the delivery method. Possible delivery meth-
ods are: unreliable, reliable, fifo, causal, agreed, and safe. The setDelfDiscard()
method can be used to specify that this message should not be sent back to the
user who is sending it.

To actually send the message, call SpreadConnection’s multicast() method on
the message you want to send.

4.3.3 SpreadGroup Class

SpreadGroup SpreadGroup();
join(SpreadConnectionconnection, Stringgroupname);
leave();
String toString();
boolean equals(Objectobject);

To join a group on the connection, use the SpreadGroup class. First, create a
new SpreadGroup object, then use the join() method to join a group:

SpreadGroup group = new SpreadGroup();
group.join(connection, "group");

Figure 4.3:Joining new group in Spread

The first argument to join() is the SpreadConnection on which the group is
joined. This must be specified so that Spread knows which connection messages
should be received on. The second argument is the name of the group to join.

Messages multicast to the group will be received on the connection until the
leave() method is called.

4.4. FACTORY CLASSES 41

4.3.4 MembershipInfo Class

boolean isRegularMembership();
boolean isTransition();
boolean isCausedByJoin();
boolean isCausedByLeave();
boolean isCausedByDisconnect();
boolean isCausedByNetwork();
boolean isSelfLeave();
SpreadGroup getGroup();
GroupID getGroupID();
SpreadGroup[] getMembers();
SpreadGroup getJoined();
SpreadGroup getLeft();
SpreadGroup getDisconnected();
SpreadGroup[] getStayed();

4.4 Factory Classes

4.4.1 MessageFactory

messageFactory = new MessageFactory(message);
messageFactory.setDefault(message);
SpreadMessage message = messageFactory.createMessage();

The MessageFactory class is a utility included with the Java interface to Spread.
An object of the MessageFactory class is used to generate any number of outgo-
ing messages based on a default message. To use a message factory, create a
MessageFactory object, passing the default message to the constructor.

To change the default message at a later time, use the setDefault() method:
To get a message from the message factory, use the createMessage() method:

The createMessage function will create a clone of the default message. Message
factories with more complex behavior can be created by extending the Message-
Factory class.

One example is a message factory that sets the message’s data to the current
system time:

4.5 Exceptions

When an error occurs in a Spread method, a SpreadException is thrown. One
example is if receive() is called on a SpreadConnection() object before connect()

42 CHAPTER 4. SPREAD JAVA API

public class TimeStampMessageFactory extends MessageFactory
{

public SpreadMessage createMessage()
{

SpreadMessage message = super.createMessage();
message.setObject(new Long(System.currentTimeMillis()));
return message;

}
}

Figure 4.4:Creating a message factory for Java Spread

is called on that object. Another example is calling leave() on a SpreadGroup
object before calling join() on that object. Any method that is declared as throwing
a SpreadException must be placed within a try-catch block:

try
{

connection.multicast(message);
}
catch(SpreadException e)
{

e.printStackTrace();
System.exit(1);

}

Figure 4.5:Testing errors on multicast in Java Spread

4.6 Notes for Applets

When using Java in an applet, there is usually a security manager installed, which
restricts what your code is allowed to do. For example, when running an applet in
a web browser, the code is not allowed to make Internet connections to any place
other than the machine running the web server. So, if Spread is running in an
applet, in a web browser, the spread daemon must also be running on the machine
running the web server. The following code can be used, in the class that extends
Applet, to get an InetAddress object for the machine running the web server:

InetAddress host = InetAddress.getByName(getCodeBase().getHost());

Figure 4.6:Getting Applet connection address

4.7. MISCELLANEOUS FUNCTIONS 43

4.7 Miscellaneous Functions

44 CHAPTER 4. SPREAD JAVA API

Chapter 5

The Event Subsystem

5.1 Introduction

The Event subsystem inSpreadprovides an abstract interface to manage all pos-
sible types of events that can occur in a networked application. This includes
network or file IO and timed function calls. These events are registered with sub-
system along with the functions to be called when the events occur. The Event
subsystem uses whatever tools the operating system provides to monitor system
events and to wait for specified times to elapse to implement a main loop which
calls the registered callback functions whenever appropriate.

A significant difference between theSpreadevent system and other similar
wrappers aroundselect or poll is that the event system also supports the idea
of priority levels. Each event is registered at a particular priority level. At any
time only events with a certain priority or higher will be handled. This feature
is used inSpreadto selectively ignore certain types of events (such as new client
connections) while other more important events are going on (such as membership
changes).

5.1.1 Initialization and General Use

Before using any of the Events functions, the system must be initialized by calling
theE init function. This allocates some data structures and initializes them to a
correct starting state.

Once the system is initialized and any beginning file descriptors or queued
functions are registered the main control loop can be started by using theE handle events

function and can be exited by calling theE exit events function. It is possible
for some small amount of additional work to be done after callingE exit events

as it does not take effect until control reaches the main loop. events.h

• int E init(void);

• void E handle events(void);

45

46 CHAPTER 5. THE EVENT SUBSYSTEM

• void E exit events(void);

5.2 Timekeeping Functions

The following functions should be used to avoid any system dependencies. These
are ported to whatever native time interfaces each operating system provides. The
sp time structure is identical to a standard unixstruct timeval and provides
microsecond resolution to time.

typedef struct dummy_time {
int32 sec;
int32 usec;

} sp_time;

The list of functions are given below. Their use is fairly obvious.
events.h

• sp time E get time(void);

• sp time E sub time(sp time t, sp time delta t);

• sp time E add time(sp time t, sp time delta t);

• int E compare time(sp time t1, sp time t2);

• void E delay(sp time t);

E compare time is defined to return 1 ift1 > t2, to return -1 ift1 < t2, and to
return 0 ift1 == t2. E delay acts like a unixusleep() function and will wait
for the specified time (or more) before returning control back to the program.

5.3 Queued Events

One of the two main uses of the events system is to allow the application to call
functions at a later time, or even to call them immediately after the current function
completes. Since an application using the Events functions gives up its main
control loop, in many cases a callback function will want to cause other functions
to be executed soon after it completes, but it cannot call them itself1.

The two functions are:events.h

• int E queue(void (* func)(), int code, void *data,

sp time delta time);

• int E dequeue(void (* func)(), int code, void *data);

1This could occur either because doing so would cause other events to be delayed too long, or
because the ordering of events in the functions requires one to compete before the other starts

5.4. MANAGING FILE DESCRIPTORS 47

Thecode anddata parameters are passed to the functionfunc when it is called
at the specified time. The function can use them however it wants. In most cases
you should use thecode parameter if all you need to pass is an integer, for ex-
ample, representing a file descriptor, a state value, or to distinguish between the
normal case and a special case for the function. If you need to pass more com-
plicated state, then create a structure which stores it all and pass a pointer to the
structure in thedata parameter.

Note that theE dequeue function does not free any data pointed at by the
data parameter so the application has to make sure to free that if noone besides
this function call needs it.

5.4 Managing File Descriptors

Each file descriptor can be registered with a callback function for each type of
event that can occur (reading, writing, and exceptions). When the file descriptor
is ready for the requested action the callback function will be called. It will be
passed the file descriptor in the first parameter, thecode value in the second
parameter and thedata pointer in the third parameter. When a file descriptor
is attached it is automatically set to theactive state. However, if the priority
threshold is not sufficient to include it, then it will be made inactive before the
E attach fd function returns.

All of these functions return 0 on success and -1 on error.
The priority can be set to:

LOW_PRIORITY
MEDIUM_PRIORITY
HIGH_PRIORITY

The threshold for what priority of events should currently be handled is set by
theE set active threshold function which also returns what the threshold is
set to. Note currently there is no way to query what the current threshold is without
setting it. Without changing the threshold level, individual file descriptors2 can be
activated and deactivated by using the obvious functions. If a file descriptor is
deactivated in this way, it will not be checked even if it is currently above the
priority threshold or if a higher threshold is set later. It can only be activated by
a call toE activate fd or by being detached and reattached. If a file descriptor
is activated, it willonly be actually checked if it is also above the current priority
threshold. Thus, both a low threshold and a deactivate trump an activate or a high
threshold.

One function can be registered for each (file descriptor, file event type) pair.
For example one function can be registered for READ events on fd 5, another

2When I say “file descriptors” what I mean is a file descriptor and event type combination.
For example, you can deactivate fd 5 for reading while keeping writing on fd 5 active

48 CHAPTER 5. THE EVENT SUBSYSTEM

function for WRITE events on fd 5 and a third function for EXCEPTION events
on fd 5. As a practical matter, you will usually want to register the same function
for both READ and EXCEPTION events because the only way to detect when the
other end of a TCP socket is closed is by doing aread or recv call on it and
the return value being ’0’. The closing of a TCP socket is sometimes considered
a READ event by the operating system and sometimes an EXCEPTION event so
registering both is necessary to correctly handle closed TCP sockets in all cases.

events.h

• int E attach fd(int fd, int fd type, void (* func)(), int

code, void *data, int priority);

• int E detach fd(int fd, int fd type);

• int E activate fd(int fd, int fd type);

• int E deactivate fd(int fd, int fd type);

• int E set active threshold(int priority);

• int E num active(int priority);

	1 Introduction to Spread
	1.1 What is Spread?
	1.2 Design Issues
	1.2.1 Comparison with reliable IP-multicast
	1.2.2 Flexibility of services
	1.2.3 Modularity of Spread architecture

	1.3 Spread Guarantees
	1.3.1 Ordering
	1.3.2 Reliability

	1.4 Additional Information

	2 Installing and Configuring Spread
	2.1 Installing Spread
	2.1.1 Downloading
	2.1.2 Installing a binary distribution
	2.1.3 Installing a source distribution

	2.2 Configuring Spread
	2.2.1 Planning a Spread Network
	2.2.2 Creating a Configuration File

	2.3 Running the Daemon and Clients
	2.3.1 Running the Monitor

	2.4 Tuning Spread for Performance or Unique Situations
	2.4.1 Membership timeouts
	2.4.2 Spread in high-load environments
	2.4.3 Dealing with bursty application traffic
	2.4.4 Changing the number of daemons per segment

	3 Spread C API
	3.1 Introduction
	3.1.1 Short Buffer Handling

	3.2 API Datatypes
	3.3 SP_Functions
	3.3.1 SP_connect
	3.3.2 SP_disconnect
	3.3.3 SP_join
	3.3.4 SP_leave
	3.3.5 SP_multicast and family
	3.3.6 SP_receive and SP_scat_receive
	3.3.7 SP_equal_group_ids

	3.4 Miscellaneous Functions

	4 Spread Java API
	4.1 Introduction
	4.2 API Datatypes
	4.3 Spread Classes
	4.3.1 SpreadConnection
	4.3.2 SpreadMessage Class
	4.3.3 SpreadGroup Class
	4.3.4 MembershipInfo Class

	4.4 Factory Classes
	4.4.1 MessageFactory

	4.5 Exceptions
	4.6 Notes for Applets
	4.7 Miscellaneous Functions

	5 The Event Subsystem
	5.1 Introduction
	5.1.1 Initialization and General Use

	5.2 Timekeeping Functions
	5.3 Queued Events
	5.4 Managing File Descriptors

